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FOREWORD

"Thermal radiation" is electromagnetic radiation emitted by 1 1atter in a
state of thermal excitation. The energy density of such radiation in an en-
closure at constant temperature is given by the well known Planck formula.
The importance of thermal radiation in physical problems increases as the
temperature is raised; at moderate temperatures (say, thousands of degrees
Kelvin) its role is primarily one of transmitting energy, whereas at high
temperatures (say, millions of degrees Kelvin) the energy density of the radi-
ation field itself becomes important as well. If thermal radiation must be
considered explicitly in a problem, the radiative properties of the matter
muast be known. In the simplest order of approximation, it can be asaumed
that the matter is in thermodynamic equilibrium "locally' {a condition called
local thermodynamic equilibrium, or LTE), and all of the necessary radiative
properties can be defined, at least in principle. Of course whenever thermal
radiation must beé considered, the medium which contains it inevitably has
pressure and densitly gradients and the treatment requires the use of hydro-
dynamics. Hydrodynamics with explicit consideration of thermal radiatioc.. is
called ''radiation hydrodynamics'',

In the past twenty years or so, many radiation hydrodynamic probiems
involving air have been studied. In thiz .ork a great deal of effort has gone
into calculations of the equilibrit:m properties of air. Both thermodynamic
and radiative properties have been calculated. It has been generally believed
that the basic theory is well enough understood that such calculations yield
valid results, and the limited experimental checks which are possible seem to
support this hypothesis. The advantage of having sets of tables which are
entirely calculated is evident: the calculated quantities are self-consistent
on the basie of some set of assumptions, and they can later be improved if
calculational techniques ure improved, or if better asoumptions can be made.
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The origin of this set of books was in the desire of a number of persons
interested in the radiation hydrodynamics of air to have a good source of

reliable information on basic air properties. A series of books dealing with

both theoretical and practical aspects was envisaged. As the series materalized,

it was thought appropriate to devate the first three volumes to the equilibrium
properties of air. They are:

The Equilibrium Therrmodynamic Properties of Air,
by F. R. Gilmore

The Radiative Properties of Heated Air,
by B. H. Armstrong and R. W. Nicholls

Tables of Radiative Properties of Air,

by Lockheed Staff
The first volume contains a set of tables along with a detailed discusaion of the
basic models and techniques used for their computation, Because of the size of
the related radiative tables and text, two volumes were considered necessary.
The first zontains the test, and the second the tables. It is hoped that these
volumes will be widely useful, but because of the emphasis on very high tempera-
tures it is clear that they will be most attractive to those concerned with nuclear
weapons phenomenology, reentry vehicles, etc.

Our understanding of kinetic phenomena, long known to be important aud at
present in a state of rapid growth, is not as easy to assess as are equilibrium
properties. Severe limitations had to be placed on choice of material. One
volume is offered at this time:

Excitation and Non Equilibrium Phenomena in Afr,
by Landshoff, et al.

It pt vides rnaterial on the more important processes involved in the excitation
of air, criteria for the validity of LTE and special radiative effects.

A discussion of radiation hydrodynamics was felt to be necessary and another
volume was planned to deal with this topic:

Radiation Hydrodynamics of High Temperature Air,
by Landshoff, Hillendahl, et al.

It is not ready for publication at this time, It will review the basic theory of
radiation hydredynamice and discuss the application to fireballe in the atmosphere.
The choice of material for these lavt two volumes was made with an eye to

the needs of the principal users of the otlier three volumes.
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Mot of the work on which these volumes are based was supported by the
Uniied Staies Government through various agencies of the Defense Department
and the Atomic Energy Commission. The actual preparation of the volumes
was largely supported by the Defense Atomic Support Agency.

We are indehted to many authors and organizations for assistance and we
gratefully acknowledge their cooperation. We are particularly grateful to the
RAND Corporation for permission to use works of F. R. Gilmore and H. L.
Brode and to the IBM Corporation for permission to use some of the work of
B. H. Armstrong. Most of the other authors are employed by the Lockheed
Missiles and Space Company, in some cases as consultants.

Finally we would like to acknowledge the key role of Dr. R. E. Meyerott
of LMSC in all of this effort, from the initial conception to its realization.

We are particulariy grateful to him for his constant advice and encouragement.

Criticism and conetructive suggestions are invited from all readeres of
these books. We understand that much remains tc be done in this field, and
we hope that the efforts represented by this work will be a stimulus to its de~
velopment.

The Editors

J. L. Magee

H. Aroeste
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Preface

This volume is concerned with all theoretical aspects of the transmission

of therm

s

and Prefessor Ralph Nicholls with some assistance from the Lockheed staff.

The principal objective of this work is the description in detail of
models and approximations which have been made in calculations of absorption
coefficients for air and its constituents. It cannot always be assumed that
the basic theory is well-known, and some effort is made to present key
der{vations and discuss points which have frequently been allowed to remain
obscure in treatments of this sort, In contrast with the situation in thermo-
dynamic properties, we can expect very significant developments in both
theory and models in the future, and the presentation here is to be con-
sidered as a status report. However, the authors have prepared a very
scholarly work which should be widely useful.

The reader is expected to have some knowledge ¢f quantum mechanics
and a certain amount of familiarity with atomic and moleczular structure.

Such a reader will be able 1o understand current work in thermal radiation
after mastery of the material presented here.

In a companion volume we have presented an extensive compilation of
tables of radiative properties of air. Nevertheless, we have felt that the
inclusion of some tables and figures summarizing the most important of these
properties in the present volume would substantially increase its usefulness.
Such material is presented in Appendix A.

We would like to thank Dr. Armstrong and Professor Nicholls for their

splendid cooperation. Thanks are also due the IBM Corporation for allowing

Dr. Armstrong'‘s work to be included in our series on "Thermal Radiation."

J. L. Magee

H. Aroeste
vi

adiaiion in equiiibrium air. It was prepared by Dr. B. H. Armstrong




- Contents -

Part A: Theory of Radlation in Hot Gases

Chapter
1 Introduction {B.H. Armstrong, R.W. Nicholls)
2 Elementary Radiative Transfer (B.H. Arianstrong)

The equation of radiative transfer (without scattering)
Local thermodynamic equilibrium

Scattering

Emission from a gas sample in the optically thin limit
Emission from a gas sample in the optically thick limit
Emission from a gas sample of intermediate optical depth

TIN N NN N
U OB =

3 Theory of Radiation {B.H. Armstrong)

3.1 Classical Lorentz formulation
3.2 Quantum formulation of radiation theory
3.2.1 Formal theory
3.2.2 Reduction of the general formula to formulas
for specific processes
3.2.3 Reduction of formulas for many-electron atoms
3.2.4 Free-free radiative transitions
3.3 Line broadening

4 Theory of Molecular Absorption (R.W. Nicholls)

4.1 The Born-Oppenineimer approximaiion and its
conseguences

4.2 The Honl-I.ondon factors

4.3 Franck-Condon factors and r-centroids, vibrational
wave functions and molecular potentials

4.4 The electronic transition moment and band strength

vii

Page

10

24
28

42
68

68
78

143
172
209

217
218
231

232
245

‘.
Lo




Chapter
5

! Appendix

Part B: Spectral and Mean Absorption Coefficients of Heated Afr

Historical Review: Research on Hot Gas Absorption

Coefficient=s since 1900 (B-H. Armstrong)

General Features of Air Absorption Coefficients

(B.H.

6.1
6.2
6.3

Armastrong)

Spectral absorption coefficients
Mean absorption coefficients

Inequalities and bounds on mean absorption coefficients

Molecular Absorption Coefficients (R.W. Nich~lis)

-~
Oy e

Molecular species and transitions cf importance
Less important molecular species and iransitions
Review of calculations of the molecular contripution
to the absorption coefficient of air

7.3.1 Early work of the 1940's

7.3.2 Approximate methods of the 1950's

7.3.3 Caleculation with the SACHA code in the 1960's

Atomic Absorption Coefficients (B. H. Armstrong)

8.1
8.2

.4

Survey of atomic models
Hydrogenic and simple-Coulomb-force models
8.2.1 Photoelectric cross sections

8.2.2 Hydrogenic free-free absorption

8.2.3 Hydrogenic bound-bound transitions and

oscillator strengths

5.2.4 Coherent scattering from bound systems
8.2.5 Compton scattering cross sections
Anal»tnc formuias and approximations to hydrogenic

rptlon coeflicients
The Rosseland-Menzel-Pekeris formula
The Stromgren function

Deficiencies of the Liydrogenic approximation
The methods used Ly Armstrong, Johnston,
and Kelly (1965)

Review of major calculations made to date

cx:arza:a:mm
J-J.: c.......c..:m

J
-hydrogenic absorption-coefficient calculations
.1
-2

Spectroscupic Properties of 8ix Important Band Systems

Which Contribute to ihe Opacity of Heated Air
(R.W. Nicholls)

viii

M o, W ot

High-temperature limiting values of the opacity

Page

382
397

401
401
403
411
415
415

471

PR

e e
i b




PART A

THEORY OF RADIATION IN HOT GASES

o i 3 e ———_e.. —




BLANK PAGE




Chapter 1. INTRODUCTION

This volume is one of a set which is concemed with all aspects of
thermal radiation phenomena in heated air, over a wide range of temperature
and density. Thermal radiation phenomena are meant to be those which arise
due to or are related to, the passage of electromagnetic energy through an
atmosphere of some type when significant interaction occurs between the
radiation stream and the atmosphere. It is usually implied that some type
of partial thermal equilibrium is produced by this interaction, although not a
complete one, of course. In the case of complete thermal equilibrium, there
can be only an uninteresting horﬁogeneous system with no net transport of
radiation at all, Radiation is a significant mode of energy transfer in all gases
at sufficiently high temperatures, and in many situations at low temperatures
as well. Since radiative energy transfer is controlled by the absorption coefficient
which is, in turn determined by the microscopic atomic and molecular, and
the statistical/thermodynamic properties of the medium, much of these volumes
are concemed with these underlying properties. In particular, alter a brief
introduction to the theory of radiative transfer limited to conditions of local
thermodynamic equilibrium, the present voluine is mainly concerned with the
detailed application of the basic quantum theory of radiation to real atomic
and molecular systems, The transfer problem only reappears occasionally to
guide this application into the practical channels which constitute the
raison d'etre of the book,

Although radiation transport is now of wide interdisciplinary application,
most of its basic developments were made in an astrophysical milieu. Some
of its contemporary applications are in stellar, solar and planetary atmospheres

and aeronomy, in meteor, missile and rocket re-entry phenomena, in
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combuaiion physics and chemistry, and in plasma and weapons physics.
Towards very high temperatures there are fewer contributing effects and
therefore the situation is conceptually somewhat simpler. Fig. 1.1 illustrates
some significant subdivisions and interrelations towards the high~temperature
limit of our considerations., As one progresses downwards in temperature, the
effects and interactions proliferate and become, at our present state of knowledge,
more fragmented and diverse, so that we will not attempt an illustration in this
case,

A large fraction of the work dating from World War II on specific
problems in the above fields of application has been motivated by qefense
needs and financed by government contracts. As a result, much of the literature
on the subject is comprised of unpublished and therefore unrefereed contract
reports which are not universally available to the scientific community. Much
of the work described in this "grey" literature (Goody, 1964) is important,
but some obscurities and errors in an already complex field have propagated
through these reports. Other problems due to the particular history of this
field have also occurred. For example, a perusal of the reports concerned

wit}

y opacity calculations shows a considerable repetition of some of the formal
arguments involved in justifying the calculations (although not in the calculations
themselves), and a lack of assignments of priority, or acknowledgements, There
has also been a substantial lack of cross referencing. This has all been due in
part, of course, to the classified nature of some of the projects, particularly

the earlier ones, and the fact that even the unclassified reports were oiten not
readily available to some of the authors, who then found it necessary to repeat

some of the derivations. However, once such a situation has been created it

is generally self stimulating even in the absence of the original causes, due to




the larga amount of effort which must be expended to ameliorate it, We hope
the present volume will help toc exorcise these ghosts: however, all the
relevant material has still not been declassified so that this goal cannot be
completely reached even at the present time.

The initiation, not long ago, by Prof. 8.5. Penner of the Journal of
Quantitative Spectroscopy and Radiative Transfer has done much to provide
an appropriate vehicle for the open publication of this work, and the reader
is referred tc that journal for recent research papers on topics discussed in this
volume.

Formidable experimental difficulties associated with the controlied
laboratory study of really hot gasr s have limited most experimental work in
the field to temperatures below 20,000°K. Thus, much reliance has had to be
placed on theoretical research involving modeis of increasing realism, complexity
and sophistication, As implied above, the basic theory employed has its roots
in (a) astrophysical discussions of the transafer of radiation through stellar
envelopes, and (b) in the applied quantum mechanics of the radiative properties
of atoms and molecules. The bulk transport of radiation through hot gases is
usually discussed in terms of the radiation absorption coefficient, which is a
phenomenological parameter of the material through which the radiation passes.
This absorption coefficient in turn, can be specified as a function of wavelength
and absorber gas properties by recourse to quantum theory and statistical
mechanics. From a detailed knowledge of the "spectral" absorption coeificient
of the gas, realistic mean absorption coefficients can be derived in terms of
which radiation transport may more conveniently be discussed. In addition,

if conditions of local thermodynamic equilibrium prevail, absorption coefficients
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are related by Kirchoff's law to the amissio

i Coeificients of the gas.

The macroscopic absorption coefficient is comprised of two factors.
These are (a) the bopulations of ths absorbing species and (b) the cross
section per particle, or the microscopic "absorption coefficient" . The first
of these factors is obtainable from statistical mechanics, and a full discussion
as well gs tables are given, in the volume of this series, The Equilibrium
Thermodynamic Properties of Hig.: Temperature Air by Gilmore, In order that
the statistical mechanics treatment be realistic, accurate information must
be available on the thermochemical properties of the absorbers, and on
equilibrium constants, when chemical processes (dissociation, etc.) that can
o~cur are also temperature dependent, The second of these factors requires a
quantum mechanical description of atomic/molecular structure to determine
radiative transition probabilities and is discussed in detail in subsequent
chapters of the present volume. Realistic atomic and molecular models are
needed for adequat« calculations of this second factor. Careful experimental
measurements of atomic and molecular properties are also needed in order to
assess or verify the quality of the models selected. Much progress has been
made during the past two decades in the approximate, yeot realistic guantum
mechanical analyses of complex atomic systems,

It should be emphasized here that both the above-mentioned aspects
of the problem of the theoretical calculation of absorption coefficients require
the strong support of experimental programs that can provide the basic atomic
and molecular data on which the calculations often depend. Thus, experimental
work in this field (among others, of course) occupies a dual role, since it
must provide some of the basic input information as well as serve its traditional

role in verifying the outcome of calculations.
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It has come as a surprise to many that all such basic measurements were

not made long ago. The growth of research institutes in "Laboratory
Astrophysics" is indicative of the large amount of atomic and molecular physics
left to be done.

The study of absorption coefficients of air may be further subdivided
quite naturally into two parts as a function of temperature. At low temperstures,
say below 12.000°K, most of the absorbing species in air are molecular, and
both the statistical mechanics of absorber populations, and the quantum theory i

of absorbing transitions must be couched in molecular terms. At higher

temperatures, air becomes a multispecies ionic gas. Theory (both
statistical and quantum mechanics) is far more developed for atomic than for
molecular species, and realistic calculations can be more readily carried out
on both aspects of the absorption coefficient, as is shown in later chapters.
The realistic and comprehensive theoretical studies that can now be
carried out or have been performed in the past decade have only become
possible due to a number of circumstances. The availability of large- scale,
high-speed digital computers, the experimentai provision of relatively good
critical experimental data, and the development of detailed and cogent
theoretical models and methods, have all been necessary conditions which
nad to be established before such work as is discussed herein could be
seriously undertaken. It is interesting to note that the accurate calculation
of opacities covers a remarkably wide range of physical phenomena and theories.
While crude opacity values are relatively easy to obtain, accurate values are
very difficult to calculate. Even though, for most aspects of the caiculations,
the basic physical processes are reasonably well understood, the carrying out
of the necessary calculations is a tedious and complicated task, and long-term

efforts are required.
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As a commentary on the recent develonment of a relatively modaost
scientific field, it is worth observing how much the need for air opacity
values (in view of the character of these quantities) has stimulated ressaich
or. such a wide and otherwise diverse variety of topics.

The plan of this volume, in detail, is as follows: the volume is divided
into two parts, the first of which (Part A, Chapters 1~4) contains the basic
theory of radiation transport, and the quantum theory of radiation as applied
to individual atomic and molecular species. The second part (Part B, Chapters
5-~8) discusses the calculation of the opacity of heated air based on the theory
presented in Part A. Chapter 2 reviews the elementary theory of radjative
transfer to establish definitions used later in the book, and to present the
overall scope of the problem. Chapter 3 reviews and discusses that part of
the quantum theory of radiation by atoms which is needed for the applications
discussed in Chapter 8, The formal results of the theory are reduced to the

formulas for specific radiative processes, and some clarif ying and comparative

comments are made on the equivalent formulae derived by a number of authors.

Chapter 4 extends the theory of Chapter 3 to take account of radiative transitions

.~ olecular species. Chapter 5 is a brief historical review of research cver

the ast few decades on absorption coefficients and opacity, and is included

to pla~c the discussion of later chapters in correct perspective, Chapter 6

disc' ~ses the general features of the spectral and mean absorption coefficients

introduced in Chapter 2, as applied 10 a real multicomponent gas such as air,

Some inequalities and bounds for the mean absorption coefficients are derived.
After the historical discussion of Chapter 5 and the review of the general

features of air absorption coefficients of Chapter 6, the remaining discussion

is arranged in order of ascending temperature. Thus, Chapter 7 reviews




opacity calculations on air up to temperatures of about 20,000°K, i.e,; the

region where molecular contributions dominate the system or cannct be naglascis

Strong reliance is placed in this region on experimental knowledge of molacular
spectra, Chapter 8 covers opacity calculations in the high-temperature
(above 20,000°K) region where atomic species dominate. The atomic models
needed for such calculations are briefly reviewed first, and then the more
important contributing processes, Finally some of the recent large-scale air-
opacity calculations are reviewed, In contrast to the character of Chapter 7,
an entirely ab initio approach to the calculations can bhe taken; however, in
practice, most calculations still make use of empirical atomic energy level
information,

An appendix is included to show how the detailed molecular properties
of O, , N, NO , and their ions are taken into account in the calculations

of Chapter 7.
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Chapter 2. ELEMENTARY RADIATIVE TRANSFER

In this chapter, a non-rigorous review of the theory of radiative
transfer indicates how the subject is dominated by the concept of spectral
absorption coefficient. An attempt is made to provide some physical insight
into the requirements which the applications of transfer theory impose on the
calculation of absorption coefficients, and to demornistrate the physical
significance of the Planck and Rosseland mean absorption coefficients. For
this reason, certain elementary solutions to the transfer equation have been
emphasized. An excellent and more comprehensive discussion of radiative
transfer, which also emphasizes the physical aspects, has recently been
given by Goody (1964) (see also Morse and Feshbach, 1953, 2.2). The
formal theory is more extensively developed by Chandrasekhar (1939, 1950)
and Kourganoff (1952). A good reference for the present purpose, although
unavailable in the open literature, is the report by H. Mavyer (1947).

Aller {1963) gives an excellent account of approximate solutions.

We first undertake in Sec. 2.1 a briet discussion of the formulation

PSS

of the transfer equation and the definitions involved. In this initial discussion,

we neglect scattering; however, a few remarks on this subject are given later,

in Sec. 2.3. In Sec. 2.2 we consider the definition of local thermodynamic

equilibrium in some detail, in order to clarify the roles of induced and
spontaneous emission in radiative trans{er.

In many problems the spectral distribution of the radiation is not of
primary concern. For these cases an appropriately defined mean value of

the absorption coefficient is useful. The manner in which the mean value

St it S v




is calculated depends on the characteristice ¢ the problem under consideration,

A limiting case of physical intsrest is that of an ontically thin sample of gus,
i.e., a sample whose dimensions are small compared with the mean free path
of radiation in the gas. Consideration of this leads to the definition of the
Planck mean absorption coefficient. Conversely the equally important
optically thick case is conveniently described in terms of the Rosseland mean
absorption coefficient. These two limiting cases are discussed in detail
and the respective mean absorption coefficients are derived.

Finally, we prasent a short discussion of the problem of radiation
transfer for intermediate optical depths. In view of the complications

involved, we limit our considerations to isothermal, uniform-density conditions.

2.1 The equation of radiative transfer {without scattering)

Consider a collimated beam of radiation of frequency v Iincident
on an extended volume of gas which absorbs the radiation, but does not emit,
If Fv is the flux of radiant energy per unit frequency interval, that is, energy
per (cm2 X sec x unit frequency interval) this flux is assumed to be attenuated
by each thin slab of gas of thickness &éx in proportion to the product

of the magnitude .F‘v and the thickness 5x

. This is {llustrated in Fig. (2-1).

Thus, we can write

5F = -y F &x (2.1-1)
Vv Vv

19




which defines the constant of proportionality w, - the linear or volume

absorption coefficieat, as

This phenomenoclogical rule, known as Lambert's, Bouguer's, or Beer's law,

leads, when integrated, to the exponential decay law:
F aF g™V (2.1-2a)

which is borne out in many experimental circumstances. Prom the usualinterpre-
tation of transport parameters, {'v = uv_l is thought of as a mean free path

for absorption. Thus, Eq. (2.1-2a) can be rewritten
F =F e V (2. 1-2b)

Experimentally, re-emission {cllows absorption, so that an
as given in Eq. {2.1-1) must be augmented by the radiation emitted in the
slab &x and the result is the equation of transfer, Eq. (2.1-4). Further-
more, the emitted flux will in general not be s0 well collimated as our ideal
parallel incident beam, so the definition of F\) must be generalized to
energy per unit solid angle across unit surface normal to a specified direction
8 , & with aunit vector & . This is illustrated in Fig. 2~2 which shows

an infinitesimal pencil of beams within an element of solid angle dQ abcut

11
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the direction {1 traversing a slab of gas of thickness L which extends

to infinity in directions perpendicular to x . The relationship between the
flux Fvo of the collimated (or parallell beam of radiation and the
general intensity function Iv(e ,%) which allows for an angular distribution

is established through the Dirac &-function (. randrasekhar, 1950, p. 22):

L, (6.8) =F  &(cos 8, = cos 8) 6(F - ¢ ) (2.1-3a)

where 8q ¢ ¢ o is the direction of the parallel beam, and the &-functions

satisfy

Iﬁ(cos 8, = cos #) 8(s -co)dﬁc 1 (& s sin 6 do ds) : (2.1-3b)
4

Iv(e'” = Iv(ﬁ) is called the gpecific intensity and has dimensions of energy
per unit time per unii frequency interval per unit solid angle per unit area normal
to {1 . The resulting equation of radiative transfer which takes account of

absorption and emission in the slab can then be written as

d&_@ _ (2.1-4)

- Jvﬁ) p - uvlv(a)

where s denotes lenygth measured in the direction & . The energy per unit
time radiated in the direction T by a unit mass of gas per unit frequency

per unit solid angle has been denoted by jv(ﬁ) , the emission coefficient,

and p 1is the mass density. For convenience, the emission coeffi‘cient is




often replaced by the source fungtion defined as

1, &) = ojv(ﬁ)/uv (2.1-5a)

The equation of radiative transfer becomes

dr @)
1 - -
_“v —V-—ds = I\,(ﬁ) - Iv(n') (2.1-5b)

The decrease in beam intensity (-6 Iv) can be expressed in a number
of equivalent ways, =sach of which defines a different absorption coefficient.
All of the resulting equations are derived from Eq. (2.1-1) which invokes
simple proportionality to beam intensity I, (by virtue of Eq. (2.1-3a))
and the increment of path length 6x . Eg. (£.1-1) thereby defines the
linear (or volume for unit cross section) absorption coefficient H,, whose
dimensions are (length)"]' .
The effect of mass density p or number density Nv of absorbing
particles is seen in Eqs. (2.1-6a) and (2.1-6b) below which define, respectively,

the ocefficient " and atomic absorption coefficient a, -

x_. has dimensions of (length)2 (mass)_1 . a. has dimensions (length)z.

\YJ v

It is thus often treated as an absorption cross-section which interpretation

is pursued further in the next section.

81, = - %1, (062 (2.1-6a)

o, = ~a,, (N80 (2.1-6b)

13
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We note that pbx s the mass increment &m per unit area, and
similarly vax is the number increment 6Nv per unit area. Ccm-

parison between Eqs. (2.1-1), (2.1-6a), and (2.1-6b) lead to
u=nc>=aN=1 (2.1-6¢)
v l; )

which relates most of the absorption coefficient parameters in common use.
One absorption coefficient parameter not previously discussed is the
dimensionless quantity, the optical depth Ty ¢ Its infinitesimal increment

is defined by
dr, = u,ds (2.1-7)
and, therefore, the total optical depth between points s' and s 1is

8 ‘
T,(8,8) = _B/" W, ds (2.1-8a)

(One should note that it is customary in astrophysics to measure optical depth

backwards along the line ss' . This would require a minus sign in the above

definitions.) The foregoing definitions of radlative transfer quantities along

with others which we do not consider here, have been conveniently summarized

by Aller (1963).

The equation of transfer (2. 1-5b) may now be written
dIV
Pt Ivm) - Iv(ﬁ) (2. 1-8b)

"V

i
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b}, which governs the transport of eleciromagnetic energy through an atmos-

phere, is often difficult to solve. Anextensive literature pertaining toithas accrued

over the years, principally in the fields of asirophysics and meteorology

(Goody, 1964; Kourganoff, 1952; Chandrasekhar, 1939, 1950; Mayer, 1947;

Aller, 1953; Elsasser, 1942; Milne, 1930; Bond, Watson and Welch, 1965).

Exact solutions can be obtained for only a very limited number of model

problems so that approximate methods of solution are o: paramount importance.

As stated by Goody (1964), the physical content of the equation of transfer

is very meager. Under the conditions of local thermodynamic equilibrium,

most of the physics of the situation is in fact contained in the absorption

coefficient TN the discussion of which constitutes the primary subject of

this book.

A general solution to Eq. (2.1-8b) can be obtained formally as follows

_ (Goody, 1964). Consider a beam along the direction @8 as indicated in

r (s',s")
Fig. 2-2. Multiply Eq. (2.1-8b) by e V to obtain

__d_ TV(S',S") - ~ TV(S',B") .
dTV [e I(s", Q)| = e Jv(s )

Integrating this equation along the direction 0 from s"=s' to

we obtain
T,(8"8) - - FoT(8%8") s
e Iu(s,n) = Iy(s',n) + f e Jy(s .2) d‘ry
S'
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Thus using Eq. (2.1-8a)

— -T,(8',8) - -T (8",
Iy(s,n) =e ¥ Iy(u’,n)+ / e ¥ *)

Jy(s". Q) d‘ry

Thus the intensity I\,(s,ﬁ) at s 1is equal to the intensity Iv(s',ﬂ)

(2.1-10)

incident at some previcus point (s') exponentially diminished by absorption,

plus the integrated intensity emitted between s" and s', each element
again diminished by the absorption which takes place ahead of s" . In the
limiting case of an optically-deep medium, we can take s' at =~ and

set the incident intensity term equal to zero. Eq. (2.1-10) then becomes

-7,(8",8)

L(s,) = [ e J (8", @) dr,

6'\‘\n

which shows how the radiation emerging from an emitting gas is limited by

2bsorption in the gas.

2.2 Local thermodynamic equilibrium

(z.1-11)

One of the most common situations in which a solution to the equation

of radiative transfer is sought is that in which local thermodynamic equilibrium

(LTE) is assumed. This assumption is often introduced ithrough the assertion

that Kirchoff's law

1, = &,B,(T)

16
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holds point-wise. This implies that at each point in the system a local
temperature T is defined. However, it may vary from point to point over
the system (Kc:rganoff, 1952; Chandrasekhar, 1939, 1950; Aller, 1963). In
this formula j\J is the radiant energy emitted per unit mass per unit time

per unit solid angle per unit frequency interval and Kv is the simflarly
defined mass absorption coefficient. We recall from Section 2.1 that Kvp is

defined such that

dl = - X,pLds (2,2-2)

is the change In the emerging radiation intensity after traversal of a distance
ds in the medium to which L pertains, assuming there is no emission.
B (T) is the usual Planck function 2hy3 o VKT /2y L o hv/AT) AR
the frequency, and T 1is ihe absolute temperature.
Complications arise through the neqlec-t of induced emission effects
{which cause jv to depend somewhat on incident intensities) in thesc
equations. Chandrasekhar (1939, Chap. .5, section 3) points out that
incorrect results are obtained if jv of Eq. (2.2-1) is substituted directly
into the transfer equation (2.1-4). Ad-hoc corrections are then necessary
to compensate for the neglect of induced emission effects.
These problems may be avoided and natural allowance be made for the
effect of induced emission if a local temperature (and thus LTE) is defined
through a Boltzmann equation relating the occupation numbers Nn and Nm
of two quantum states involved*in absorption or emission (Chandrasekhar, 1939,
Eq. 108ff and discussion following Eq. 118, Mayer, 1947)
N
I = exp (hvnm/k'l') (2.2-3)

N,
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In any real physical situation there will usually be mar ; absorbing and
emitting states, and often many different atomic and molecular species.
Since the transitions and species can be treated one at a time and then
added, we limit ourselves to single events and single species in this
chapter. This 1s conceptually much simpler, and involves no loss of
generality if the reader bears in mind that the appropriate sums must
ultimately be carried out.




where hy =E ~-E is the energy separation between the states. For
simplicity statistical weighis have been assumed to be unity in this discussion,
LTE so defined makes no assumption about the radiation field which need not

be in equilibrium with matter. In practice it is often not in equilibrium

except at the center of strong spectral features. Eq. (2.2-1) implicitly
includes the radiation field but Eq. (2.2-3) does not.

To follow the consequences of this definiiuion it is necessary to
introduce the Einstein coefficients Ahm and Bn m* for spontaneous and
induced em.ls;uon, respectively. We define these coefficients as follows.
Anmb(v)/h is the probability per unit time, per unit frequency interval,
per unit solid angle that an atomic or molecule in excited state n emits a
photon with energy centered about h"nm = En - Em . The line-shape factor
b(v) has been included so that our results can be expressed per unit frequency
interval. The li: ..aps .. che probability distribution in frequency for the
photon, and represents the probébﬂlty per unit frequency interval that the

photon produced in the tran: " “>n n- m has the frequency v .

The usuual definitions of the Einstein coefficients (see, e.g.
Chandrasekhar, 1939; also Sec. 3.1 of the sequel) which assume infinitesimally
sharp lines do not incorporate this factor and consequently require cumbersome
double definitions of emissionmand absorption coefficients and of intensities.,

The normalization condition [ o(v)dv =1 is satisfied by b{v) , and it will
o

be further discussed in .he next section (2,3). By using this factor in our
definitions at this point, all quantities can be expressed as functions of
frequency, rather than some appearing integrated over the line profile,

From the foregoing definitions we see that the energy emitted sponianeously

*
The Einstein B~coefficient B, 2nd the Planck function B (T) should
not be confused. v

18



in a time dt into the solid angle d and the frequency interval dv by

ithe excited atom or moleculse is

h b 1
dES(\)) - —\’.%T;L_(v—) dt dn dv (2. 2"6) ‘

Since the spontaneous emission is isotropic, the total number of photons
spontaneously emitted per second per unit frequency interval per atom into all

angles is Anmb(v) . Now it turns out that the probability of the emission of

a photon hvnm is augmented by stimulated emission if the atom is immersed

in a field of radiation containing a distribution of frequencies about Vom *

Thus, Bnm is defined so that C-IBnmIv (?S) d? dv dt is the probability that

an excited atom or molecule in state n is stimulated by an external intensity
of radiation R)(?)) to emit a photon with energy centered about hv nm in the
direction & , the frequency interval dv and time dt . Thus the stimulated

or induced energy emitted by the single system into the various differential intervals is

dEM) = () ¢ 1B bW () d dv dt (2.2-4b)

The coefficients A nm and Bnm are properties of the individual
atomic or molecular systems, and their evaluation is a problem in the quantum
theory of radiation which will be discussed in Chapter 3. We assume, while
discussing radiation transport, that they are known quantities. Eqs. (2.2-4a)
and (2.2-4b) are respectively the spontaneous and stimulated radiant energy

contributions emitted per atom or molecule. The total radiant

19
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energy emitted by an element of volume dv ‘with mass dm= pdv) will

then be obtained by adding these two tarms and multiplying by the number of
particles within the element dv that are in the guantum state n . Thus,

if n, is the number density of particles ‘n th2 state n ,

1

b(v)nndv[AmL."@n +o "8 1 (M) hv 4G dv dt (2.2-5)

is the energy emitted by the volume element dv in time dt into the
element of solid angle d0 and frequency interval dv about v .

nm
The energy emitted per unit mass of material will be this quantity divided

|
{
i
)

by the mass pdv of the element. The energy per unit mass per unit solid

=

angle, frequency interval and time is called the emission coefficient jv .

Thus

n -
i, = —pﬂ [—:ﬁm*c o xv(a)] hv b(v) (2.2-6)

It is shown in Chapter 3 that if I'\\m . Bn and an are the

m
Einstein coefficients for spontaneous emission, stimulated emission and
(stimulated) absorption for transitions between lavels n{upper) and

m(lower) , each assumed for simplicity to be of unit statistical weight, then

fnm. - ami (2.2-7a)
Bnm c3
: Bm = Bon (2.2-7b)
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The B-coefficients are defined here relative to radiation energy density
rather than to radiation intensity (Aller, 1963; Allen, 1963). We may
further relate the absorption coefficients My, and ", to an by
appeal to Eqs. (2.1-1), (2.1-3a), and (2,1-6a). Thus

- = = = -1
51, “v1v5x oxvlvéx nmIvémenhvb(v)c

or
= = -1
u,=ox, =n B hy blv) ¢
From Eqs. (2.2-6) and (2,2-7a,b,¢)
8nhy3 W
Aﬂm - c nmfhvg bzv,
and

v c m n. hv

n 2
oo BB 2 e @)

This may be rewritten in a more compact form using the definitions of LTE

(Eq. (2.2-3)) and the Planck function:

3
B\, (T) - ,z_h%_ _._.1__

hy
c e kT -1
Thus
WE W RM@ e -y 16
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(zo 2_9)
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which reducas to

Pl, =1y, BT + e 70y 1 ()
where

uv' - u‘\;(l - e-hV/kT)

', may similarly be defined by
-hv/kr)

nv=xv(1-e

Thus

v

i = x'v Bv(T)-+ e‘hV/kT ", Kﬁn)

(2.2-10)

(2.2-11a)

(2.2-11b)

(2.2-11¢)

Eq. (2.2-11c) explicitly shows how the augmented emission coefficient

jv depends on Iv as a result of stimulated emission.
for jv . which should be used when a change of quantum state occurs, the
first term is the contribution to the emission coefficient from spontaneous

emission and the second term is thc contribution from stimulated emission.

That is

(spontaneous) _ _,
Iy % 8,

and

v
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j (stimulated) _ - o~ hv/kT 1,

In this the expression

(2.2-12a)

(2.2-12b)
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There are therefore two equivalent ways of formulating the principle

of local thermodynamilc equilibrium, viz.,

N
B+ I 2.2~
N exp(kr) (2.2-13a)
n
(spontaneous) _ _, (2.2-13b)
Jv ®y BV(T)
Eq. (2.2-13b) is more useful here since it allows the transfer equation
without allowance for scattering to be written in similar form to Eq. (2.1-4).
Thus
19, 4 (spontaneous) , , (induced)
e ds v 3y =L (2.2-14)

Egs. (2.2-11b), (2.2-12a,b) and (2.2-14) lead to the following form for the

transfer equation which also implies existence of LTE:

dlI
1 (2.2-15a)
ﬁ—asl- x\"(Bv_!v) (2. Jar
or
dI
as =M, (B, ~1) (2.2-15b)

Note that we have not included scattering in this definition; this is
sometimes done in Astrophysics by means of a generalization of Eq. (2.2-13b),
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Eq. (2.2-15b) is very siimilar to Eq. (2.1-5b) and {ts formal
solution may thus be written down from inspection of Eq. (2. 1-10)
replacing IV by B\, and My, by u'v respectively. The ‘ormal

general solution of Eq. (2.2-15b) is therefore

-+ (s',s

S
- ) -7 ( ., )
1@ =e ¥ (s +J STV B\,(T(Tv,)) . (2.2-16)

where

M. ds

<.
—
N
[ 4
(/5]
-
i
—
< -

(2.2-17)

w

2.3 Scattering

The type of scattering of primary interest in the study of high-

temperature plasmas is coherent scattering from the ground and low-lying

states of atoms and/or molecules and their icns. (By coherent scattering

is meant scattering tha: occurs without a change in frequency of the photon
inveived, and without a change of state ¢f the e:omic system involved.)
Therefore, we 1ill confinie curselves here 10 a few remaiks concerning cecherent,
non-relativistic scatiering which are intended tc point out the difference
between transfer hy (coherent) scattering and transfer by absorption/emission.
For more extensive discuss:ons of the general subject of scattering, see, e.g.,
Chandrasekhar, {1953, and Van de Hulst {1957). Explicit forms of the cross

sections involved for coherernt scattering from hydrogen, and for Compton

2L |




scattering, will be considered in the next chapter, along wiih mention of
the relativistic corrections required for Compton scattering at sufficiently
high temperatures.

Once the assumption of LTE is made, and the emission and absorption
terms in the transfer equation appropriately simplified, these terms will
differ from the scattering terms which appear in the transfer equation. The
reason is that emission into a beam by scattering is not accompanied by a
transition of the atom or molecule and is thus not directly affected by
excited states of the system other than the one which the system is in at
the moment of scattering. That is to say, absorption and emission occur
with a change of state of the system, whereas scattering does not, The
two types of processes, i.e., scattering and absorption/emission will be
related and pass one into the other for short-lived excited states. For
such states, scattering cannot be distinguished from a real absorption follcwed
almost simultaneously by a reai emission with the emitting system reverting
to its initial state {Heitler, 1854)., This happens near a resonance line and
is further complicated by <he fact that a photon with energy near enough to
a real excitation energy can produce the real =xcitation, or transition,
with the help of a transier of energy from or to a nearby electron or ion.

(cf. Baranger, 1952; "The One-Electron Approximation".} Thus, if we
compute all real absorption and emission transitions, including those which
need an outside interaction of energy 0 to AE to occur, we will have
included the scattering produced by virtual states which fail to conserve

energy by an amount between 0 and AE ., )

25
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Mayer (1947) has shown that there is no correction of the form
1-e Y tobe applied to non-relativistic scattering. Actually, one should
not expeci it, since the atom does not change state and hence, there is no
upper state tc re-oinit back into the beam, but it can be demonstrated
rigorously. Mayer does this by showing that the induced scattering into
the beam is exactly cancelled by induced scattering out of the beam, *
Pictorially what he demonstrates is as shown in Fig. 2-3. Emission intc

the direction (' depends on an integral of the form

duS(Q*Q')
— g3 1o ' (2.3-1)

£

over all other cirections i , which is the ordinary scattering term, and

an induced scattering term proportional to

j LAY 1 100) an (2.3-2)

o]
A

That is to say, this second term depends on the beam intensity in the
scattered direction, which is why it is called induced scattering, However,

the scattering out of the beam contains a term

j Gllea) gy 1) an- (2.3-3)
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which, with the proper proportionality factors eactly cancels the previous

term., The implication apparently is that since induced scattering d

L8858 GCCur,

one might expect a correction analogous to the 1 - e Y correction obtained

in the case of absorption and emission to appear. However, it is not just

induced emission that leads to this correction (if this were the case we would
need only to correct the absorption term in the transfer equation and no distinct

emission term correction would appear (since both absorption and induced
emission are proportional to the intensity [ , they can always be lumped

together) .

The existence of spontaneous emission is also required - ~ an emission
term independent of the incident intensity. This is what is lacking in the

case of scattering. There is no spontaneous scattering. As Mayer (1947)
points out, the scattering terms in the transfer equation are proportional to
nb(l + nb) (nb = number of "radiation oscillators”). Thus, there is no

term independent of n, as there is in the case of emission (which is

proportional to 1+ nb) .

The diminuition of the beam r\,(?i) due to scattering within the

element of distance ds can thus be written

(sc)my _ 2 -
8L Q) = - Nvasclv(ﬂ) ds (2.3-4)

where Oec is the total cross section for scattering by the particles with

number density Nv . In addition to this depletion, the beam will be

augmented by the amount

axv‘s")(ﬁ) =N, [ Iv(ﬁ') Q‘Lg%'.'—‘m dn’ (2.3-5)

0'
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Whoie N is the differentiai cross section for scattering from the

direction ()' into the direction I . If we add the above terms to the

jation, Eq. {2,2-15bj, we obtain

o

Y = (B,L) + Ny [ W@=D 1 @) an- o0 (2.3-6)

J

Qo

where we have defined My, (sc) by:

uv(sc) = N,0. (2.3-7)
2.4 Emission from a gas sample in the optically thin limit
The Planck or "Emission Mean" Absorption Coefficient
Before defining the Planck mean absorption coefficient, let us

investigate the flux emitted by a plane-parallel slab of gas in order to
define the optically thin limit in several more or less equivalent ways.
Consider the radiation from an isolated slab of gas at temperature T , as
in Fig. 2-2. The total monochromatic radiation flux per unit area leaving
one face of the slab within the solid angle AQ is

F4o = J I, cos 6 dfd (2.4-1)

AQ
where 08 is measured from the x~direction normal to the slab. Multiplying the
transfer equation, Eq. (2.2-15), on both sides by d1 using dx=ds cos A ,

and integrating over the hemisphere of outward directions, yields the equation

dI
v
Gx 08 6 dn = Al pl, B, - K, /Iy aq (2.4~2)
AR AR
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From Eq. (2.4-1) ar< the definition of the mean (partial) ovntward intensity

Le o
f;«~+ = &L*[ A?{ LI (2.4-3)
we can rewrite Eq. (2.4-2) as
dF
5 = AQplL(B, - I—w) (2.4-49)

* -
The optically thin approximation now consists in neglecting Iv - relative
to B\J . and taking the derivative dFv +/d.x as the ratio of finite increments
of emitted flux 6}‘\) and slab thickness ©&x . With these approximations

we obtain from Eq. (2.4-4) the integrated flux or total radiant energy emitted

within the solid angle a€ ,

oF, = AQ.éx [ u! B (T) dv (2.4-5)
The same result could be obtained by integrating Eq. (2.2-10) for the emission
coefficient upon neglect of (a} self-absorption, and (b) induced emission.

The flux from a volume element 6V = 6AS8s cut out by the walls of an

infinitesimal slab is (see Fig 2-4)
6F, = st{jypav cos 2 dv d/sA (2. 4-6)

But 6s = 6x/cos 6 and pj' = B\J(T) . Thus

oF, = o&x [Jp'B (T) dvdg@ = AQ &x /uLBv(T) dv

Recall that we are considering an isolated slab; hence, there is no
incident intensity at the boundary.
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If AN is the entire hemisphere, then Eq. (2.4-6) becomes

6F, = {an | u; BV(T) dv] 6x . The result can also be obtained as follows
from the general solution to the transfer equation, Eq. (2.2-16), using the
approximation u;6x<< 1 . With the additional assumption that the incident
intensity vanishes, Eq. (2.2-16) yields the total cutward flux from one side

of an isothermal slab as

H,0X

F = 2r jdv BU(T) [ 1-e °°F° 6) cos 6 sir ¢ dé (2.4-7)
]

We wish to show that the correct result ~ to first order in u\'}éx - is obtained
by expanding the exponential in spite of the fact that cos 8 = 0 within the

range of the integration, With a change of variables Eq. (2.4-7) becomes

— 1 ' (2. 4-8)
F=o [awBT)[}- Eq(uyox)]
where
o0
d&x _-xy
E = | =
alY) I n® (2.4-9)
1
are the usual exponantial integrals (Chandrasekhar, 1950). By use of the
relat.ons
nE 1 (¥) = e¥ - yE (v)
% (2.4-10)
_ n
EI(Y) =-~7v-logy+ Z (- 1)° l.n__:‘l'_;.!.
n=1
30
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as given by Chandrasekhar (1950) (y = Euler's constant), we find

F = 2n fdu B,(T) {#Lax +0 [(pLax)z log uybx] +0 [(#;ﬁx)fl” (2.4-11)

which agrees with Eq. (2.4-5) to first order in u'sx (with AQ = 2n),
This result shows that radiation in the angles near 6 =n/2 , which are
not involved in many practical cases, does not contribute to F in first

order. There is contribution in first order to Iv where the result

corresponding to Eq. (2.4-11) is

I=  (L+ %) upex + (wax) log wiox + O [(uyex)?

The radiative energy emitted by one face of a slab of perfect radiator
in thermal equilibrium at temperature T can be obtained from Eq. (2.4-7)

by letting &x -« . The result is, for the energy emitted per unit area,

4
/2_[BV(T) cos §d dpy = /B(T) cos § d3 = %T—— /cos gdn = 0’1‘4 (2.4-12)
T Fa:3

v 27

where

B(T) = Jav('r) av = o4 (2.4-13)
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We can define the (flux) emissivity ¢ of a slab relative to this standard

as the ratio of the total radiant energy one face of the slab emits tc that

emitted by one face of a blackbody slab at the same temperature. Thus for
a thin =lab,

(L]
-
te

oF, 2max fu B, (T) av

| d
€% = (2.4-14)
or? ot

Since this quantity depends on the slab thickness, it is somewhat more

satisfactory to define ¢/8x as the gmissivity per unit length. 1f we define

the Planck mean absorption coefficient (or emission mean) GP(T) as

'8 (T) dv x futB (T) dv
f“" 3 = f s (2.4-15)
fBV(T)dv oT

uP(T) =

then the emissivity per unit length of an optically thin slab becomes

€/6x = 2uy(T) (2.4-16)

A similar quantity, the "hemispherical emissivity" €y, Is sometimes

used (Penner, 1959). It is defined as the ratio of the radiant flux emitted
by a hemispherical volume (with radius &R ) of gas into a "point" collector
at the center of its base. We will show that ¢ AR 1is one-half the thin-

slab emissivity per unit length;

eh/oa = EP(T) (2.4-17)
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In general, the relation between the emissivity and the mean absorption
coefficiant depends on the geometry of the amitting samnle through a numericai
factor {Bond, Watson, and Welch, 1965). We can illustrate this directly jp
the thin-slab limit with reference to Fig., 2-5. The radiation arriving at 0
from the shaded volume H within the hemispherical shell contributes to the
hemispherical emissivity. The radiation arriving at 0 from the remainder

of the slab, S , is the additional contribution which arises in the thln-sla.b
definition. We shall show that these two contribuiions are equal in the limit

of small optical depth.

Consider the isothermal solution to the transfer equation (Eq. (2.1~11))

divided into the contributions fromregions H and 8§:

v - fv1 - v2 -
_ v - v v,
Iv = [ B,(T)e d'rL = [ By(T)e d'rL + By(T)e dfv
o o T
-TV -T -T
= B(T) [1 -e 1] + B(T) [e vi_ o "2] (2.4-18)
where
T u;R
Tyg = u;R/cos 8
33
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We obtain the flux crossing the surface at 0 by multiplying Iv of Eq. (2.4-18) by

cos 8 dQ dv , and integrating over di and dv . The resultis

F=F +F,
where
-u' R
F, =1rfo(T) (l-e ")dy

is the contribution from the hemispherical region H and

-T -T
F2 = fva(T) (e 1. e "2) cos 0 dq} dv

y 2r

is the contribution from the remainder of the alab, region 8.

We make the approximation of smell optical depth, viz., T, < 1, and expand the

exponentials. The justification of this expansion has been given in Eq. (2.4-11).

This leads to

= )
Fl = nR[By(T)pydv
and

":l
]

2 !2,!: B (T) [~ MR+ u;,R/cos 8] cos 6 dp dv

1]

7R [By('r) ul, dv

3k

(2.4‘20)

(2.4-21)

{2.4-22)

(2,4~23)

(2.4-24)

e
1 =
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From Egs. (2.4-23) and (2. 4-24)

From the definition of the Planck mean absorption coefficient, (Eq. (2.4-15))

the thin-slab emissivity is

F o
= 2up(T) (2.4-25)
while the hemispherical emissivity is
F
1 _ = (2.4-26)
—~—3 = upl(T)
0’1‘4 P

2.5 Emission from a gas sample in the optically thick limit
The_ Rosseland or "Diffusion Mean" Absorption Coefficient
Whereas the Planck mean is of interest when the intensity Iv << B\, .

another mean becomes of importance in the "opposite"” limit, namely,

I\) = B\) (20 5- 1)

We have previously noted that when Iv << Bv and LTE prevails, the radiation
is far from being in equilibrium with the matter. On the other hand, Eq. (2.5-1)

will be satisfied when the radiation is nearly in equilibrium with the matter.
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Inserting Eq. (2.5-1) #s a zeroth-order approximation into the transfer equation,

Eq. (2.2~15) we ohtain

dBV
L | Iy =4 B” - E;’ -E; (2.5"2)
] t
*
; for a first order approximation. With Eq. (2.4-1) the integrated net flux
|
P&‘z in the x~direction can be given, as illustrated in Fig. 2-6, by
. 1 dBV {(2.5~3)
Fe = - ‘TLE—COJGGS}dV‘
¥ since the first term of Eq. (2.5-2) is isotropic and thus does not contribute
b
5 to the net flux, Svbstituting s = x/cos 6 ,
de dB
= - L ¥ .52 . I S 7 -
F, [u' T cosT 6dndy = 3/#, &= (2.5-4)
14 1 4
-wvith similar cxpressions for Fy and Pz . Thus,
F = o~ = e V = - -1 —— ___.Z 2.5—5)
3/% B,(T) v (3 /“,V g+ ) vT (
If the Rosseland mean absorption coefficient is now defined as
5 1 [ 9B(T) / raB (1)
; A A (2.5-6)
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Eq. (2.5-5) becomes

dB —
= _  4m 1 v = 4r 1
F = - .T;_ —_ ( T dy) ‘7"' = - 3 v B(T ) (2. 5"7)

1

In terms of the Rosseland mean free path AR = ﬁil , and the radiation density

47

u = Tva(T) dv , Eq. {2.5~7) can be written

cA -
3 Vl.l (2. 5"8)

=y
i
B

This equation is the basis of the definition of the Rosseland mean free path

A, . the Rosseland mean absorption coefficient 4, , and the Rosseland
R R

mean opacity ;'ZR where

kg = En/p (2.5-9)

Note that in contrast to the Planck mean, the Rosseland mean is an_inverse

mean and thus emphasizes small values of the absorption coefficient. The
Planck mean emphasizes large values of absorption coefficient.

Eq. (2.5-8) is analogous to that of the diffusion equation (Kennard, !1938)

Y = Dvn (2. 5- 10}

Ed

where J isacur.znt, n 1isa particle density and D is the diffusion

coefficient. Thus AR is an effective diffusion length and c;\R/B is the
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diffusion coefficient. Eq. (2.5-7) describes the diffusion of the photon
through the gas.

The limits of validity of Eq. (2.5-7) can be ohtained by examinin
the approximations implicit in Eqs. (2.5-1) and (2,5~2) as foilows. The
transfer equation (Eq. (2.2-15)) 1 ay be written

Also

It Ivg B, . (Eq. (2.5-1)) then l/u\', dIv/ds must be small compared
to Bv . thus from Egs. (2.5-1) and (2.5-11)

al
1 dr
o —d; s < B.(T)
14

which is the basic requirement of the approximation. Butas I = R

. dB (T)
1l 4T v
ut ds < BV(T’/ it

But the Planck function Bv(T) is given by

3
B (T) = 2hy /ehv/kT -1
v c2
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(2.5-12)

(2.5-13)




thus

dB (T)

v
BV(T) / dT

e—hv/kT) sz
hy

(-

Therefore from Egs. {2.5-13) and (2.5-14),

‘dTV
1 |ds 1 - e—hv/kT

E T < hu/kT

which expresses the limit of validity of the diffusion approximation.

A derivation of the Rosseland diffusion theory can also be given by
analogy to simple kinetic diffusion theory (Kennard, 1938, p. 188 {/) if one
notes that the specific intensity I\) has the nature of an energy distri-

bution function {cf 2.4 of Morse and Feshbach, 1953), or that Iv/hv

(2.5-14)

(2.5-15)

has the nature of a particle distribution function. With reference to Fig. 2-7,

let n be the density of particles {in this case photons)at the surface S .
‘We assume that the density varies only with x so that the density at dr
is n + Ax %}% . It is well known from elementary kinetic theory that the

particle flux T across a given surface within a gas is given by

=

i
L

2
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where v is the average velocity of the particles (Kennard, 1936, p. 62). If one

retraces this derivation giving all the particles the same velocity ¢ the sameresultis obtained.
In view of the change in density along x , the rate at which particles collide within

d7 and thereafter cross S [ i.e., photons are absorbed and re-emitted to cross §]

will be increased by the amount %Ax%% ¢ . Thus, the flow of photons towards - x
will be

1 1 d -
r_-lnc+dax)cdn (2.5~17)

where A?_ is the average value of Ax at the last point of collision for each particle.
With a similar expression for T’ , and by use of AX_ = -g-z , A-:E_'_ = - %l,where L

is the mean free path between collisions (Kennard, 1938 , p. 140), we obtainthe netparticle
flow across the surface S:

- - 1_,dn 2,5-18
F=r,+T_=35ctgt ( )

Generalizing this expression to three dimensions and setting the mean free path £
for photons of irequency v equal to l/u\"
flux per unit frequency interval:

, we obtain the photon number
= C - 2 . 5-' ]-9
T, = 4% S, (2.5-19)

This result can be compared directly with the standard form of the diffusion equation
Eq. {2.5-10), to yield c/3u'v as the effective photon diffusion coefficient,

Lo
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For photons in equilibrium [or approximate equilibrium according to

Eq. (2.5-1)] the particle density per unit frequency interval n, is given by

n, = (517) %E B,(T)

with the result that the photon energy flux thv = -I:‘v becomes

- 4 —
F, = gﬁ: VBV(T)

in agreement with Eq. (2.5~5) . Performing the frequency integ-ation leads

again to the definition of the Rosseland mean free path of Eq. (2.5-6).

The foregoing derivations of the Rosseland diffusion theory have been

given for the physical insight which they convey. The more rigorous standard

derivation (Goody, 1964; Chandrasekhar, 1939) i{s to set the source function

Iv(s‘,ﬁ) (E Iv('rv(s",s))) in Bq. (2. 1-11) equal to Bv['rv(s".s)] and expand

B (-r\)) in the Taylor series

dB, a’B, (8", 5)
B, [7,(s",5)] = B(s) + 52| 7,(s"s)+ —5 G e
Vs d'ry 5

The integration indicated in Eq. (2.1-11) can now be carried out and the flux

computed to obtain the result given in Eq. (2.5-7).

L1
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(2.5-21)
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2.6 Emission from a gas sample of intermediate optical depth

™o I
n

diative tiansfer in the realistic general case oi intermediate, or
finite, optical depth, where one cannot make the approximation that the
radiating gas sample is optically thin or optically thick, is quite difficult
to handle mathematically. Resort is usually made to numerical integrations
of the transfer equation (Hillendahl, 1964) involving elaborate approximation
techniques or to alternative methods as the Invariant Imbedding techniques
of Ambartsumian and Chandrasekhar (Coody, 1964; Chandrasekhar, 1950).
Mean absorption coefficients are no longer sc useful in expressions for
the net radiative flux, since the coefficlents become dependent on path length
and on the geometrical configuration of the sample. Intensities and fluxes
are thus computed directly.

A formal simplicity can be given to certain of the intensity and flux
expressions however, by defining mean absorption coefficients, which are
of convenlence in calculation. The mathematics for the general case of
intermediate optical depth is sufficlently complex that the only situations
for which closed analytic solutions exist are those for gas samples with
extremely simple geometric conflgurations at constant density and temperature.
We will therefore, consider explicitly only these coniitions and configurations.
Consiaeration of more general cases can be facilitated by means of "“trans-
mission functions” which we will also define and discuss briefly.

Consider an isotheimal, plane-paralle! slab of gas of uniform density,
of thickness L , and of infinite extent perpendicular to the x-axis (Fig. 2-2).
Now select an infinitesimal pencil of radiation through the slab at an angle 8 to
the x~axis. The ou*ward intensity Iv + along such a pencil can readily be

obtained from first principies. (See, for exampie, Penner, 1959, pp. 13-15.)

L2




We make

(]
SLXNT =

intensity I\/(s'ﬂ) set equal to zero, and the lower limit s° taken as

zera. For x< L, nsity and temperature are assumed to be

Y —ood & AL 4. e .
2.2-16), with the incident

constant, and there i{s azimuthal symmetry in & , we can write Eq. (2.2-16)

as

uy L/'cos o
L,(L.6) = B (T) [ e 'S dlu's)
o

The integration can be performed immediately, leading to the result

- u'L/cos 8
gum)-aﬁm (1-e Myeos )

X
In terms of the normal optical depth 1'3 = J’ u\') dx , where x , asin

(2.6-1)

(2.6-2)

Fig %2, is measured normal to the slab, or9n terms of our original path-length

variable s , this result has the equivalent forms:

-Tn )
Lf o - [P
- —u:,s
Iy(sr n) = BU(T) [l -a ]

L3

(2.6-3)
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Penner (1959, p. 14) calls the last of these expressions the “basic law for
uniformly distributed radiators*. We note that for s = R the last of these
expressions is also appropriate for the intensity observed at the center of
the base of a hamisphere of radius R.

If we multiply the intensity as given by Eg. (2.6-3) by cos 6 and

integrate over solid angle in order to compute the flux from one face of the slab
we find

/2 -“JK/OO! )
1-e cos 0 ¢in @ dO (2.6-4)

F, ~ 278,(7) f
(-]

© -yt
This 1s usually exprassed in terms of the exponential integrals En(y) EJ.'QH— dt
t

previously introduced in Section 2.4 , by use of the transformation 1

t= 1/cos 6 . With these substitutions Eq. (2.6-4) becomes (cf., Eq. (2.4-8)

F, = (1) 1 - 26,05)] (2.6-5)

The total flux over all frequencies 1s obtained from this expression by

integration over v ¢

F=op [l -02" j BU(T)Ea(u;,x) dv] {2.6-6)

This expression has been used with the assumption of a constart absorption
coefficient to obtain a simple estimate of the effects of finite optical

[
thickness (Davis, 1964). If M, is assumed t.. be a constant ' indepen-

dentof v , Egq. (2.6~6) becomes

F=ort [| - 253(3:)] _ (2.6-7)
L




- ) |
Computations of F/F by Strack (1962) using {'= Up , the Planck mean,

indicate that this is a useful approxima:ion only under certain rather limited
circumstances. For further calculations of F see Davis (1964). The

correct value of |i' that m kes this expression exact is

0

- cos O B.,(T) -“:'x/cos e

H'E -« o fn e o {2.6- %)
X w"

as can be readily verified by substitutton in Eq. {2.6-7) (where B(T) is

defined as in Eq. (2.4-13)).

- s \
Because of the frequent appearance of the exponential function e " :

involving the absorption coefficient and path length, it is convenient to

*
define and name it as an independent quantity. The customary name applied

is intensity transmission function (Elsasser, 1942; Chandrasekhar, 1350)

since it is the ratio of the diminished intensity to the original intensity under

isothermal, homogeneous cenditions, i.e.,

-u,s 1 (s)

e = ii—(c;; = Trlys) (2.6-8) *

(cf. Eq. (2.1-2)) in the presence of pure absorption alone. Although, strictly
speaking, one can have pure absorption alone only under non~equilibrium
circumstances, under more general circumstances this exponential function still
constitutes an integrating factor for the transfer equation {cf, Eqs. (2.1-9 and

2.1-10)) zs long as induced emission can be neglected. From Eqs. (2.2-11 and

2.2-12), one s=es that this is possible as long as hv/kT>> 1. This is

generally true for optical or infrared radiation at atmospheric temperatures,

~u ]
so that the transmission function e is customarily used in such low-

temperature applications (cf., e.g.., Goody, 1964).

~
)!J

At higher temperatures

We define and use herein only this intensity transmisszion function, A flux
transmission function 1s often also defined and used; cf., e.g., Elsasser (1942).

. e e .



one cannot generally neglect induced re~emission into the beam, so that ?
Eq. (2.6-8) no longer constitutes the most useful definition of a function
from which radiative intensities and fluxes can be more or less cirectly obtained.

Under conditions of LTE, the function which most effectively

-u s
renlacas e v as an integrating factor for the transfer equation ‘
-u_'s
is e Y where uv' (as before) is the modified absorption
~hy/kT

coefficiant “v‘l ~a@ 7). Itis also called a transmission function EE
even though, strictly speaking, it is not the slr'nple ratio of two intensities. !
For gases in LTE, a direct connection of e-u“’ ® with observation is

afforded by the definition of emissivity for a non-thin slab, Let us define the

spectral emissivity of an {sothermal gas sample as the ratio of the flux it

emits per unit frequency interval to the flux per unit frequency interval which

a blackbody emits. Then from Eq. (2.6-3) we find for the spectral emissivity

€c of an infinitesimal pencil of gas of length s the resuit

Iv(s,ﬁ) : -Ms
Ve EV' ! , - -e

sl-H%ﬂ

(2.6-9a)

For such an infinitesimal pencil the intensity will all be in the direction

of the pencil; hence, the flux and intensity are the same. Approximately :‘

e ]

the same result would be obtained for a long, narrow cylinds

or column of
gas. Hence, the emissivity given by Eq. (2.6-9a) is also known as the bgam
or column (spectral) emissivity and has been given a subscript c . It can
also be called the hgmisghgriggl*emlsslvlty, sincae by holding s constant
and integrating Pv and Bv cos 6 over a hemisphere we obtain ihe

emissivity that would be observedhgt the center of the base of a hemisphere
*

All these names are somewhat confusing, but we mention them since they
are in the literature. In view of the defining equation, Eq. (2.6-9a), it
would probably be most straight forward to call this quantity the intensity
emigaivity
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as at 0 in Fig. 2-5. OQf course, this "high-temperature” definition

[}
-u.'s
s Vv caii sill e used at iow ten.peratures as long as LTE prevails or
~u_ S
hv >> kT , whereas the reverse is not true, viz., s V is ro longer

appropriate at high temperatures. Tha definition of emissivity given by

Eq. (2.6-9) 1is very similar to the definition of absorption function

A(uvs) often employed in low~temperature radiation studies. If there

1s negligible re~emission into the beam, the fraction of the original baam
intensity I\)(o) which is zDsorbed (under isothermal, homogeneous conditions)

is given by
Alu,s) '(I\,(O) - Iv(s))/ 1,0 = 1- exp(-u,s)

or,

A‘“vs) =1- Tr(uVS) (2.6-9b)

Although this definition is formally almost identical to that given in
Eq. (2.6-9a) , the difference in interpretation and validity should be
noted. If there is appreciable re-emission into the beam, Eq. {2.6=9b)
loses its direct significance.

To define a total emissivity, we need to take the ratio of the total
(frequency~-integrated) intensity to the integrated Planck function as in
Section 2.4 . Thus the total {isothermal) column emissivity can be

written as

;j;v b —e "

e =
¢ jhu(r)dv

8,(T)

(@ [1- T 5)] B(T)
N B(T)

(2.6-10)
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Experimentally, one would expect to observe intensities that are effectively
averages over small frequency intervals, sich as line or band emigsiviti
The frequency intervals of concern here for defining and computing such
emissivities are those which contain from a fraction of a s
perhaps a few lines. Under most conditions the Planck functions will
normally not vary substantially over such an interval and the average of

the intensity over Avi can be written as

-w _ - _
Iu' = €,8.4T = [l -Tri(uy';)"]nv'(r) ( 6-11)
where ‘-ci = I-Tri(“y';) (2.6-12a)
s “Hy,S .
and Tr'(uvs) vy f e dv (2.6-12b)
i Av

i

with the result that the total column emissivity becomes (cf. Goody, 1964), !

if we choose equal intervals Av‘ ,

Yz s(m
e 1 G (2.6-13)
DN X{)

where 1 rather than v is used to label the frequency intervals and

i
B (T) dv
BI(T) ‘-‘-j —VA—\)—"‘ . The column (or intensity) emissivity can be converted to
i
avy

L8




a slab (or flux) emissivity €4 by integration of I\) and B\, over a
hemisphere of outward directions as in the preceding Eq. (2.6-4). Thus,

we can write

fdnfdu ( 1o g Hp/eos 9) B,(T) cos 8

.
€y =

" f B(7) dv
(2.6-14)

= - ;zﬂ?-fdv B,(1) (£,

which 1s, of course, just the ratio F/0T4 as given by Eq. (2.6-6),

Although, as mentioned previously, mean absorption coefficients are
rot as significant for finite optical depth as in the limiting cases, it is still
instructive to define them. This amounts merely to a re—expression of the
formulas for flux and intensity that one obtains directly from the transfer
equation, but it provides a certain amount of conceptual continuity between
the limiting cases. Also, because of the rapid, violently-fluctuating frequency
dependence of the spectral absorption, it is often essential to define meait
absorption coefficlients to make a given calculation tractable, as
well as physically meaningful.

The frequoncy Integrated intensity of Eq. (2.6-3) which is

o, ,x) = f(t -o'“:,"/‘“e) BV(T)du (2.6~15)

can be expressed in the same form as the spectral {ntensity by the proper
definition cf a mean absorption coefficient which we will call GT . Thus,

we can write

I, x)= (l _.-er/eooe) 8 (T (2.6-16)

L9
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if we define GT as in Eq. (2.6-7a) (Mayer, 1964)

- (B, -u'x/cos?®
Gk, 0 = - &8 & ('.nj e dv (2.6-17)
o
_ cos B, .
= - = in B(D) Tl‘(uVX/COS 8) dv (2.6-18)

Analogously, the (frequency) average transmission function Tr \')s can be

re-expressed as an average absorption coefficient by means of the definition
i(s) = - L 4n {Trc;\')sf} (2.6-19)

The total emissivities can then be expressed simply in terms of GT . which,
in turn, can then be expressed in terms of the p . The hemispherical, or

column (intensity) emissivity becomes

-8 !
D (71 R | (2.6-20)

while the slab ("flux") emissivity takes the form

. -LX - COS 6
- J16,x) cos 8 dO f(l -e ™ ) cos A d0  (2.6-21)

€s 7B(T)

2 Jo
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Although this is an exact expression, it is not of great practical value
because of the labor involved in obtaiuing [I,r(x,e) .

The connection between us) and GT(x,e) can be seen by
considering averages over limited spectral regions across which Bv
does not vary appreciably (viz., regions over which the transmission function
may be averaged as in Eq. (2.6-11)). For such aregion 4v , which we label

with the index |1 we have:

-

B -u'x/cos 6
ﬁT&.9)=-99-£—Q¢nZ—BﬁL)[eV dv

A\a‘1 .

— T -

[
B, Av
- - s:%s;_i 4n Z ; —15(,3— [in@;x/cos e{l (2.6-22)
i
L

-

o _eos8 o BAV, .- ulx/cos e)1 x/cos 6 .
x B(T) '
1 !

Rearranging and taking the exponential of both sides yields

-in(x, 8)x/cos 0 B,A -u'(x, 8), (x/cos 8)
o T cos z —1—3(\%— e §/ 508 . (2.6-23)
i
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For the hemispherical or column emissivity, one obtains from Eq. (2.6-20) ‘\
and Eq. (2.6-23)

-u'(s),s
= - , i -
€ =1 F?‘ﬂ E B, e (2.6-24)
:

|

; ‘ Eqs. (2.6-16) - (2.6-24) are primarily of computational interest. In this
{
}

e e e % bt

respect they are not trivial since they (together with Eqs, (2.6-11) and (2.6~12) |
for the transmission function average) assist in determining the tvpe of
spectral average one should use in order to avoid specifying any more

spactral detail than {s essential for a given calculation. They provide

criteria for ascertaining which spectral features of the absorption coefficient ‘

are most important under a given set of circumstances. Thus, we can see

that the spectral average needed for a geometry which s neither optically |

|
thin noroptically thick is that of the absorption coefficient in the gxponent{al
s
a Y . Spectral regions within Av for which

! >
uvs> 1

(2.6-25) }

i
will contribute zeros to the average

'S
K% Ie v dv

b, s

and to an emissivity such as glven by Eq. (2.6-10) or Eq. (2.6-20). Thus,

one only needs to know accurately the width of such regions. Much lass




e

accuracy Is ne~ded for the strength of u,, since one only has to ascertain

PEYS g

that u;_s >> 1 , On the other hand, for very weak regions where

u\',s << 1

-u' s
the integrand e *  is near unity. In this case one can expand the

exponential and the contribution to an emissivity such as Eq. (2.6-24) is
proportional to u;s ; therefore, the strengths of these regions ars of greatest
importance and their widths are relatively unimportant.
The relative importance of the widths and strengths
of small spectral regions (particularly linaes), show up even more distinctly
in the calculation of Rosseland and Planck mean absorption coefficients and
will be discussed in more detail when we consider the calculation of these
quantities later (see Part B ) . The geometric parameter or length s
does not enter their calculation so that the relative importance of different
| spectral features is fixed once and for all by the basic assumptions. For
the intermediate optical depths now being considered, the appearance of the
r parameter s provides another variable which affects the importance of a
given spectral feature in the absorption coefficient as a function of optical
depth.. Similar considerations are applicable te the gross contributions
—ui(x)x to the emissivity as given by Eq. (2.6~24) for different 1 .

Be
B The only difference is that the gross contributions given by

|

|

|

‘ Eq. (2.6-24) have the Planck function B, as an additional weighting
f factor compared to the fine contributions (for which BV is constant)
|

|
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which make up

Thus, {f one is calculating an integrated flux or total emissivity away from

the Planck funciion maximum, where B‘ 18 small, much less accuracy is

required in the specification >f W, than for regions near the Planck maximum.

8pectrum lines usually constitute a large fraction of the detail which
must bs accounted for in a radiaticn transport or absorption coefficient
calculation. S8ince they often exhibit common features and regularities
which can be used to simplify their treatment, it is worthwhile to consider
briefly the transport of radiation within the profile of an individual spectrum
line. Furthermore, since lines, as opposed to more continuous spectral
features (such as ionization and dissvciation) occur in virtually infinite
number and with a wide variety of shapes and features, it is preferable to

group such lines whenever possible into classes which can be treated as

units. For this reason, we will also touch upon the subject of band models.

By this is meant a relatively simple analytic or stochastic representation of
a large number of actual lines.

Before considering band modsls per se, wa give a brief exposition of

giv
absorption or emission for a single line designated by the index « . The

absorption coefficient for a line can be written as

u{u - Sabu(v-vo)

where S_ 1s the intensity of the line and ba(v -~ vo) is a shape factor,
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The line shape factor i{s to be normalized to unity:

-1 {2.6-28)

over the profile of a lina, so that the frequency integral of the absorption

coefficient {s equal to Sq
[--]
] - -
I TN d(v vo) -8, (2,6-29)

We can apply the definition of the absorption function A(qu) or the

column emissivity £y to a single line using Eqs. (2.6-9a,b). These

definitions for the line a , become

‘ch(') = 1 -Tra@",t)

(2.6-30)
A ) = T=Tr i) = € eca®

The approximate equality symbol ~ has been uped for the absorption function
to remind us that this quantity represents an okbservable net attenuation only
approximately, and thieg notation will bs retained in the sequel where this
latter interpretation is implied. The approximation is, of course, very gocd at
low temperatures where the re-emission into the incident beam is negligible.

Another useful definition is that of average absorption A , of a single

line, which is for the line a that is a member of a group of lines,

+ ®

: (2.6-31)
xa-i . f (l -oxp(-ums)}dl
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where A is the average spacing between lines. This is related to the

so-called aquivalent width Wa(n) by
W, (s) = KQA (2.6-32)

where the basic definition of Wu(a) is given by

‘o (2.6-33)
- f Aa (l-lvs) dv
-
By use of Eq. (2.6-30) , the equivalent width is seen to satisfy the exact
relation
+e
wa(') = ewa(s) a (2.6-34)

The origin of the name “"equivalent width" lies in the fact that Wa(s) is
the width of a totally absorbing line Vo, = ») having the same integrated
absorption function, viz., the same value of IA“ (uva) dv as the given line.

The relation between W(s) and s is known, for historical reasons in astro-
physics, as the "curve of growth, " As statedin Eq, (2.6-34), W(s) is alsoequalto

the frequency integral of the column emissivity. We note, however, that this

56




i{s not the total column emissivity as we defined this latter quantity in
BEq. (2.6~10), since the Planck function appears as a weighting factor in
the total emissivity definitlon.

Experimantal ohzervations of the intansity of a line profile as a
function of absorbing thickness (in a cold gas) are often reduced to curves
of growth for comparison with theory. The theoretical prediction for such a

curve for lines with a Lorentz shape:

Py L
b - = .6-
(v vo) o - vo)z WLZ (2.6-35)

(w; is the Lorentz half-width)
can be obtained by inserting Eq. (2.6-35) into the definition of Wa(s)
as given in Eq. (2.6-33) and performing the integration. The result one

obtains (due originally to Ladenburg and Reiche, 1913) is
wiw) = 2mwp ue™* {1 ) + 1)} (2.6-36)

where u = SaS/ZTT w; , and I, and I, are Bessel functions, for
{maginary argument, of the zeroth and first order, respectively (Whittaker
and Watson, 1952). These considerations of a single line are applicable

to a band of isolated lines of equal intensity either by summatiaon
over the band or by reduction of the band to a single average line. For bands

of isolated lines of unequal intensities, a generalization can readily be made

to N lines if a distribution function can be specified for the N line strengths.
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The average equivalent width of the lines is

. N
Wis) = ,'q Z W_(s) (2.6-37)
=1

In order to compute W , some assumption must be made regarding the
distribution of line intensities. For example, for exponential and inverse-
first-power distributions of the line strength 8 it can be shown {Goody, 1964)
that, for the Lorentz line shape,

2rw.u

w - — -
and
W (inverse) = erwL[e"u I(u)+2 uc-“{lo(u) + Il(u)} - J] {2.6-39)

respectively. The definition of u as given following Eq. (2.6-36) must
be modified in each case by replacing S by the average line strength §
for the exponential distribution, and by the maximum line strength S for
the inverse first power distribution.
Although the above models may be modified to include overlapping lines,
more elegant and powerful techniques are available through the formulation
of regular and random models based on a statistical approach. Both regular
and random models depend on an assumed “multiplication property* of

transmission funcrions. That is t0 say, suppose there are two non~reacting
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components (1) and (2) of a mixture so that

Tr (1, 2 = Tr_(1) x Tr (2) (2.6-40)
\Y) \Y Vv

Then if the interval Av over which averaging takes place is sufficiently

large, we can also write
'r;v (1, 2) = 'h'v(l) X Trv(2) (2.6-41)

if the transmission for component (1) and component (2) are uncorrelated.
The conditions under which this is valid are discussed by Goody (1964).

The regular model was first developed by Elsasser (1942). The model
consists of an infinite number of lines of equal intensity with equal spacing
between lines, which may be allowed to overlap. The absorption coefficient

for Lorentz lines may then be written as

= +o
i s wy
! sz (+r) . (2.6-42)
v 2 &
j= - v -i8)" + i

where & 1is the frequency spacing between lines and the average absorption

can then be shown to be

A = 1-E(y,u (2.6-43)

where y = wL/S and

+ 1/2

E(y, v) =f exp (-2'7 uy %’I—%L_-;om dx) (2.6-44)

-1/2
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The function E(y, u) cannot be written explicitly in terms of known functions
and must he numerizssll, rated or treated in limiting cases.

The random mode} was first considered by Mayer {1947) and Goody (1952).
In its most general form, it refers to N overiapping lines of unequal

intensity randomly spaced in an interval Av = N&é for which it can be shown

that

1 N -
T}' ) A.;' j exp -[Z u;J. Y (2.6-45)

by, j=1

Eq. (2.6-45) has recently been applied by Churchill, Hagstrom, and
Landshoff (1964) to a computation for heated air. The integral is approximated

by evaluating the argument at many points in Av1 and utilizing a trapezoidal

integration scheme. The final rasults show that an average T over A\)1 |

may be fitted to the following simple empirical form

T = -'2 [oxp (--l-l'l s) + exp (-u‘2 s)] (2.6-46)

where uj and u;: are mean abaorption coefficients for two groupings of
lines. Tables of u'l and “'2 as well ag graphs of the behavior of 'I‘ri
are given for temperatures between 1000°K and 12,000°K and densities from

atmoapheric normal to 10”4 normal.

In considering lines superimposed upon a background continuum, it

e e n

is of interest to inquire into the degree of separability that exists between

the two types of emission. What we can show"is that the total energy !

* The method is due to S. A, Hagstrom.
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radistsed by aa aimosphere esquals the snergy of the continuum emissfon

plus the energy of the line emission diminished by the factor exp (-u cl).

where Mg is the continuum absorption coefficient which is assumed to

be essentially constant over some frequency interval Av . The intensity

I\, (s,ﬁ) in the direction I due to an emitting column of gas of length
s 1s given by

- LI l)
s =B (1-e be * K1

where ué and ”i. are the continuum and line contributions to the

absorption coefficlient, respectively. Integrating Eq. (2.6-47}) over the

interval Av we get

- LIS l)
IAv(s.ﬁ) - jdv Bv('r) (1-e be * ui s)

v

- j dv B (T) - e He® fnv('r) e- "L ® av
av Av

whare we have agssumed ué is constant over AvV .

The intensity due to lines alone is

e - [aama-ot
av

-uLs
-J’dv av(r) - Idv B,(T) e
AV

Av
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(2.6-47)

(2.6-48)

(2.6-49)




or, rearraunging,

-uis
Idv av('r) e = I dv Bv(T, - If\‘v {2.6-50)
av av

Substituting Eq. {2.6-50) into Eq. (2.6-48) , we get
—u's -u's
L, - Idv B(T) -e ° Idv BT + Iy (s, e ©
Av av

~4
- £+ xz'v o (2.6-51)

whare the continuum intensity Izv is given by

-
I, (s.8) -fdv B,(T) (1-e ) (2.6-52
Av

Nota that Eq. (2.6~51) holds regardless of whether the lines overlap or not,

The importance of Eq. (2.6-51) 1s that it gives us a ready idea as to

the relative importance of continuum versus line effects. Thus, if, for example,

u's > 0.1

Q-

the continuum spectrum will cause an apparent reduction in the line contri-

bution,and in regions where 3

[ ] Al
M8 > 1

ISP ST
-
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the iines may be disregarded entirely, for most practical purposes.

The relation (Eq. (2.6-51)) may be put into an equivalent form in

terms of partial lintensity) emissivities:

c L
W TRY® T&em

av Av

L, M8

=1~ (1 ~€,) e (2.6~53)

or

av ™ €av Y ey Tty sy (2.6-54)

wheare

and

u's
c - = - c
€av [ %&’5 av 1~

are the line and continuum partial emissivitias, respectively.

€3
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FIG. 2-1 ILLUSTRATION OF A

COLLIMATED BEAM OF RADIATION P
INCIDENT ON A PLANE-PARALLEL
SLAB OF GAS (SHADED SECTION).

Su




. ’
FIG. 2-2 ILLUSTRATION OF AN ‘
INFINITESIMAL CONE OF RADIATION \
IN A SLAB OF GAS OF THICKNESS L. )

!
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FIG. 2-3 ILLUSTRATION OF INDUCED SCATTERING, I{Q")
REPRESENTS THE BEAM INTENSITY IN THE PARTICULAR
DIRECTION €‘; SCATTERING INDUCED BY THE INTENSITY
I(0) DIVERTS PART OF THIS BEAM INTO THE DIRECTION
g . THE EFFECT 1S SYMMETRIC BETWEEN THE DIRECTIONS

AND @' .

- ”)
\‘/ b

(6A IS MEASURED NORMAL TO THE DIRECTION
OF THE BEAM)

FIG. 2-4 FLUX EMISSION FROM AN ELEMENT OF
VOLUME IN A SLAB OF THICKNESS 8x .




FIG. 2-5 THIN-SLAB AND HEMISPHERICAL GEOMETRIES

FIG. 2-6 INTENSITY Iv AND x-COMPONENT OF FLUX F:

dr
/

FIG. 2-7 TRANSPORT ACROSS A SURFACE AREA , § .
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Chapter 3. THEORY OF RADIATION

In Chapter 2 we raviewed the influence of absorption coefficlents
and related experimentally measurable quantities on the transport of
radiation through gases. The absorption coefficients and related quantities
were introduced as atomic constants, and no discussion was made of the
factors which determine them. In this chapter we therafore review the
classical and quantum models of radiation theory which are used to
detarmine the absorption coefficients and other transition parameters of

atoms and molecules.

3.1 Classical Lorentz formulation

The Lorentz theory (an excellent discussion is given in Stone, 1963)
based on the classical model of interaction between electromagnetic
radiation and matter is well known. It involves the examination of the
behavior of an ensemble of damped linear,simple harmonic electron oscillators
(callad “atoms") driven by the electric vector of the electromagnetic wave.
The theory has been spectacularly successful in discussing dispersion, and
many other phenomena of physical optics. In spite of {ts limitations, and
tho apparently arbitrary assumptions which have to be applied to overcome
them, much physical insight can ba obtained by study of the Lorentz model.

In the discussion of the anomalous dispersion, the equation of motion

of a typical damped, driven, oscillating electron is

m¢+b&k+kx=eE exp (iut) (3.1-1)

where

vy = b/m (3.1-2)
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is called the damping constant. The characteristic angular frequency of

the electron is

w_ = (k/m/? (3.

w, = 2Hv° (3.1-3b)

and the angular frequency of the driving E-vector s o = 21y, . Straight-
forward and well-known analysis leads to the following expression for the

frequency dependence of the absorption coefficients

2 -Y—) |
a, = -[g; ) in_x_ 3 (cmz) (3.1-4a)
(-~ +)
2 _x_)
u, = 2"" 7 =N o, (em™) (3. 1-4b)
e
1)
() we
k =de L 7% Y (cmz/gm) (3.1-4c¢)

v mep
- P+l
3

where N is the number of absorbing atoms per cm” .

These equations represent the 'Lorentz' radiation~damping natural
line profile and, apart from a redefinition of vy in the quantum formulation,
retain the same form of a tuned, damped oscillator in this case as a typical
Lorentz line is illustrated in Fig. 3-1, where the width W at ‘half power point'
Is seen to be the distance between the two frequencies at which the two terms

in the denominator of Eqs. (3.1-4a,b,c) are equal. Thus we have

W= (3. 1-5)

T ey Tl escumgeile, o 1R wad he
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From a consideration of the decay of the oscillation due to clasuical
dipols radiation, it is easy to show that when the driving field is removed,
if t {is the time for the power to decay to 1/e of its injtiul value, the

damping constant has the value

2.2 2 . -
y= % = §II_V.__29_ = 9_;4231 sec”? (x in cm) (3.1-6a)
3 mc A
or 2
t = 4.50 \“ (sac) (3.1-6b)

Integration by elementary methods of Eq. {3.1-4a) with respectto Vv over a

a spectral line leads to the important result (see Aller, 1963)

2
=08 -
J.a.\. dv pops (3.1-7a)

In order to compare such an equation with experiment the model has
to be refined somewhat. Atoms exhibit mcre than one spectrum line and it
is thus assumed that the electron is so bound that 1% can nscillate at one of

a number of characteristic frequencies v o * The ‘fraction' of the electron

associated with any one characteristic frequency is designate 1 f and is
celled the classical oscillator strength at that frequency. This requires

that the right hand side of Eq. (3. 1-7a) be multiplied by £ , and thus

2
= 1Ie. -
fo av=re. ¢ (3.1-7b)

The sinilar expressiong for the other integrated absorpticn coefficlents

becoine
e’
j“v dv =T Ny (3.1-7¢)
el
x\,dv=~§— Nt (3. 1-7d)
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When v 1s measured in cm ! rather than sec™!

2
I a, dv =18 f
mec
and a similar change occurs in the denominator of Eq. (3, 1-7¢c and d).

The equivalent width W (Section 2.5) of an optically thin line

may be written as

2

w f?vdv Nxfo.v dv me Nfx

Thus for optically thin lines. W can be used to measure N, f or x .

The application of Eq. (3.1-8) to the optically thick case involves
a discussion of the cutve of growth (see Aller, 1933 and Section 2.5).

A few propeities of clacsical oscillator strengths are noted briefly.

a) The 'sum rule’
YE =]
is ¢cbeved.

b) For continuous spectra Eq. (3,1-7b) 1s written

where df 1s the element of oscillatcr strength associated with the

frequency increment dv .
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Eq. (3.1-7b) takes the form

(301"78)

(3.1-8)

(30 1-9) .

(3.1-10)
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c) In the classical formulation, the o

-~
- =
mulation, TN &<

11ator strengtih of a line 18 a good
paramater with which to specify the integrated absorption coefficient of the line.
Finally we make brief mention from a classical standpoint of

scattering processes and of the Einstein A and B coeffictients.

Light Scattering. Suppose a classical oscillator with frequency Vo

is hit by a photon of frequency v . It can then be shown (Heitler, 1954)

that the total cross section is

(3. 1-11)

where

o™ ez/mc2 (3.1-12)

is the classical electron radius, and y 1is the natural line breadth, given as

2
2
y=% —> rg (3.1-13)

<

From Eq. (3.1-11) one can discuss three cases of interest:

1) for Vo <<y and Y <<v , we obtain Thomson scattering cross section
=8 2 (3.1-14)
2)
